Exam VWO Math C

Formula sheet

Rules for random variables

For two random variables X and Y, we have:

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

For two independent random variables X and Y, we have:

$$
\sigma(X+Y)=\sqrt{(\sigma(X))^{2}+(\sigma(Y))^{2}}
$$

If you have n independent random experiments, each with the same random variable X, then the following holds for the sum S and the mean \bar{X} :

$$
\begin{array}{ll}
\mathrm{E}(S)=n \cdot \mathrm{E}(X) & \mathrm{E}(\bar{X})=\mathrm{E}(X) \\
\sigma(S)=\sqrt{n} \cdot \sigma(X) & \sigma(\bar{X})=\frac{\sigma(X)}{\sqrt{n}}
\end{array}
$$

Binomial distribution

For a binomially distributed random variable X, where n is the number of trials and p the probability of success, the probability of k successes is equal to:

$$
\mathrm{P}(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
$$

Furthermore: $\mathrm{E}(X)=n \cdot p$ and $\sigma(X)=\sqrt{n \cdot p \cdot(1-p)}$

Normal distribution

If X is normally distributed with mean μ and standard deviation σ, then:
$Z=\frac{X-\mu}{\sigma}$ follows a standard normal distribution with: $\mathrm{P}(X \leq g)=\mathrm{P}\left(Z \leq \frac{g-\mu}{\sigma}\right)$

